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The phase-ordering kinetics of the ferromagnetic two-dimensional Ising model with uniform bond disorder
is investigated by intensive Monte Carlo simulations. Simple aging behavior is observed in the single-time
correlator and the two-time responses and correlators. The dynamical exponent z and the autocorrelation
exponent �C only depend on the ratio � /T, where � describes the width of the distribution of the disorder,
whereas a more complicated behavior is found for the nonequilibrium exponent a of the two-time response as
well as for the autoresponse exponent �R. The scaling functions are observed to depend only on the dimen-
sionless ratio � /T. If the length scales are measured in terms of the time-dependent domain size L�t�, the form
of the scaling functions is in general independent of both � and T. Conditions limiting the validity of this
“superuniversality” are discussed.
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I. INTRODUCTION

Aging phenomena have become one of the paradigmatic
examples which are used to study fundamental aspects of
nonequilibrium criticality, besides their practical use in ma-
terials processing. If some physical system is brought rapidly
out of equilibrium by a sudden change in an external control
parameter �an often used device is to quench the system by
lowering its temperature rapidly from the disordered high-
temperature phase to its ordered low-temperature phase
where at least two thermodynamically stable states coexist�
one often finds simultaneously the following three proper-
ties: �i� slow �i.e., nonexponential� dynamics, �ii� breaking of
time-translation invariance, and �iii� dynamical scaling,
which together are said to constitute aging behavior. These
features were first observed together in the mechanical prop-
erties of many polymeric materials by Struik,1 and it has
since been understood that the broad characteristics of aging
can be found in many different types of nonequilibrium sys-
tems. Besides spin glasses,2,3 other well-studied examples
may be found in the phase-ordering kinetics of a ferromagnet
quenched below its critical temperature Tc�0 �Ref. 4� or in
granular media.5

The analysis of phase ordering as it occurs in ferromag-
nets quenched from an initially disordered state into its co-
existence phase with temperature T�Tc is particularly
simple to formulate. The motion of the domain walls is
driven by the surface tension between the ordered domains.
The typical time-dependent length scale is related to the lin-
ear size of these ordered domains which grows as L=L�t�
� t1/z, where z is the dynamical exponent. For a noncon-
served order parameter, it is well known that z=2.4 Because
of the simple algebraic scaling of the linear domain size L�t�,
one expects the following scaling behavior for the single-
time correlation function,

C�t;r� ª ���t,r���t,0�� = t−bF� �r�
L�t�

� , �1�

for sufficiently large times t� tmicro 	with a microscopic ref-
erence time tmicro such that L�tmicro� is of the order of the

lattice constant
. Similarly, for the two-time correlation and
response functions �in the aging regime, where the observa-
tion time t and the waiting time s satisfy t, s� tmicro, and
t−s� tmicro�:

C�t,s;r� ª ���t,r���s,0�� = s−bFC� t

s
,

�r�
L�s�

� , �2�

R�t,s;r� ª �����t,r��
�h�s,0�

�
h=0

= s−1−aFR� t

s
,

�r�
L�s�� . �3�

Here ��t ,r� is the space-time-dependent order parameter,
whereas h�s ,r� is the conjugate magnetic field �spatial trans-
lation invariance of all averages will be assumed throughout
this paper� and a and b are aging exponents. The scaling
functions FC,R�y ,0��y−�C,R/z for y→� which defines the au-
tocorrelation exponent �C and the autoresponse exponent �R.
For phase-ordering kinetics in pure systems, it is generally
admitted that b=0 and simple scaling arguments show that
a=1 /z. For an initial high-temperature state and for pure
ferromagnets, �C=�R is independent of the known equilib-
rium exponents.2,4,6–10 The scenario just described is referred
to as simple aging. The conditions for the onset of aging and
the possible scaling forms have been carefully discussed in
Refs. 11 and 12.

In going from phase-ordering kinetics in simple ferromag-
nets to glassy systems �usually modeled by spin systems with
disorder and frustration�, one expects more complicated
growth laws L=L�t� which describe a crossover from the
domain growth of essentially pure systems 	as long as L�t� is
small compared to the typical distance between disorder-
created defects
 to a late-time regime with a slower growth
and dominated by the defect structure. For disordered ferro-
magnets without frustration, this can be studied through gen-
eralizations of the Allen-Cahn equation, which attempt to
describe how the pinning of the domain walls created by the
disorder should be overcome by thermal activation.13,14 In
addition, it was suggested that once the unique reference
length scale is chosen to be L�t�, the resulting scaling func-
tions should become superuniversal in the sense that they
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should be independent of the disorder.15 This superuniversal-
ity has indeed been confirmed for the single-time spin-spin
correlator.16–21 Furthermore, superuniversality is in qualita-
tive agreement with the experimental observation in several
distinct polymers and metals that the linear response to a
small mechanical stress can be described in terms of an uni-
versal master curve which is independent of the material
studied.1 The universal scaling functions of the pure case can
be calculated from the theory of local scale invariance.22

Tests in nonintegrable systems include the auto- and space-
time responses in the two-dimensional �2D� and three-
dimensional Ising models,23 the autocorrelation function in
the two-dimensional Ising model,24 the same quantities in the
two-dimensional q-states Potts model with q=2, 3, and 8
�Ref. 25� as well as the autoresponse function in several
other cases; see Ref. 26 for a recent review. Therefore, with
the help of superuniversality, if confirmed, the scaling func-
tions describing nonequilibrium relaxation of quite complex
systems would become analytically treatable.

In this work, we shall consider a two-dimensional ferro-
magnetic Ising model with quenched bond disorder. The
nearest-neighbor Hamiltonian is given by27,28

H = − �
�i,j�

Jij	i	 j, 	i = 
 1. �4�

The random variables Jij are uniformly distributed over
	1−� /2, 1+� /2
, where 0���2. The model has a second-
order phase transition at a critical temperature Tc����0 be-
tween a paramagnetic state and a ferromagnetic state. It is
thought that Tc���Tc�0��2.269. . . should not depend
strongly on �. Using heat-bath dynamics with a noncon-
served order parameter and starting from a fully disordered
initial state, phase ordering occurs, and there is evidence
which suggests that the characteristic length scale L=L�t�
� t1/z should scale algebraically and where the dynamical
exponent z=z�T ,�� should depend continuously on the tem-
perature and the disorder �. Indeed, generalizing the Huse-
Henley heuristic argument13 by considering the case when
the disorder-created energy barriers for the motion of the
domain walls are distributed logarithmically with respect to
the domain size L�t�, the form27,29

z = z�T,��=
?

2 + �/T �5�

was proposed, where the constant � parametrizes the barrier
height. Simulations of the linear domain size27 seemed to
confirm this, with the empirical identification �=� and are
also consistent with the results of field-theoretical studies in
the Cardy-Ostlund model.30 Data from the thermoremanent
magnetization MTRM�t ,s�=h�0

sduR�t ,u�=s−afM�t /s� were
used to estimate the exponent a and, assuming a=1 /z, also
looked consistent with Eq. �5� and �=�, at least for values
for T and � for which z did not become too large.31 Supe-
runiversality has been confirmed recently for the hull en-
closed area.32 On the other hand, the conclusion of a simple
aging reached in Refs. 27–29 has been questioned by more
recent simulations for the random-site Ising model.33 In that
work, a scaling form C�t ,s�=Cst�t−s�+Cag	h�t−s� /h�s�

with h�u�=exp� u1−

1− � was considered, where  is a fit param-

eter. In the limit →1, one recovers the simple aging sce-
nario described above 	the stationary part Cst�t−s� merely
represents an irrelevant correction to the leading scaling be-
havior
. The case �1 is called subaging, and the case
�1 is called superaging. In Ref. 33 systematic deviations
from the dynamical scaling of simple aging were observed in
the 2D random-site Ising model quenched to below Tc. A
data collapse could be achieved, however, by allowing  to
vary, and values in the range 1.03–1.04 were reported.33

This finding was interpreted as to suggest the presence of a
slight superaging effect.33

In the following, we shall present data on the single-time
and two-time correlations as well as on two-time response
functions. As we shall see in Sec. II, our data are fully com-
patible with the simple aging scenario, and furthermore,
looking at a larger range of values of z, we find that the
dynamical exponent z=z�T ,��=z�� /T� depends on the con-
trol parameters in a more complicated way than that sug-
gested in Eq. �5�. These conclusions are also valid for the
two-time response function. The dependence of the various
nonequilibrium exponents on both � and T will be studied.
We also show evidence that the scaling functions only de-
pend on the ratio � /T of the control parameters and finally
confirm the generic superuniversality of the scaling functions
of correlation and response functions. However, we also find
two conditions which must be satisfied for superuniversality
to hold. Our conclusions are given in Sec. III.

II. RESULTS

The simulations are carried out as follows. For the inte-
grated response we simulated systems with N=300�300
spins using the standard heat-bath algorithm. Prepared in an
uncorrelated initial state corresponding to infinite tempera-
tures, the system is quenched to the final temperature in the
presence of a random binary field hi= 
h, with strength h
=0.05, following the well-established method of Barrat34

�using a random field avoids a bias which would drive the
system rapidly out of the scaling regime�. Turning off the
random field after a waiting time s, the thermoremanent
magnetization MTRM�t ,s�= 1

TN�i�	i�t�hi�s�� is measured at
time t. We averaged over at least 5�104 different runs with
different initial states and different realizations of the noise.
We point out that the data discussed in this paper are of much
higher quality than our earlier data31 for the autoresponse.
For the autocorrelation function, we considered systems with
up to 600�600 spins in order to avoid the appearance of
finite-size effects for the times accessed in the simulations.
The data discussed in the following have been obtained after
averaging over at least 5000 different runs with different
random numbers. Our main focus was on �=0.5, 1, and 2
where we considered for every case at least four different
temperatures. In addition, some runs where also done for
other values of �. The total study took approximately
2�105 CPU hours on Virginia Tech’s System X supercom-
puter composed of Dual 2.3 GHz PowerPC 970FX proces-
sors.

Our first question is about the scaling form to be used. In
Fig. 1, we show data for the autocorrelation C�t ,s�
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=N−1�i�	i�t�	i�s��, plotted over against t /s, for several typi-
cal values of � and T. A nice data collapse is seen, which is
fully consistent with simple aging. Our scaling plots also
imply that the exponent b=0, analogously to what is found
in the phase ordering of pure systems. In Ref. 33, a superag-
ing scaling form C�t ,s�=C�exp	 �t−s�1−−s1−

1− 
� was considered
for the random-site Ising model where the exponent �1 is
fitted to the data. Simple aging is recovered in the →1
limit. However, the values of 1.03 reported in Ref. 33
are so close to unity that a careful study on possible finite-
time corrections to scaling appears to be required before such
a conclusion could be accepted.35 For all ��2, our data for
the random-bond model show no hint for a superaging
behavior,36,37 in contrast to the findings in Ref. 33. Note that
the observed scaling form of simple aging would be incom-
patible with a non-power-law form of L�t� in the range of
times considered. We also remark that for �=2 and larger
temperatures finite-time corrections to simple aging are ob-
served; see Refs. 31 and 38.

Having in this way checked that the relevant length scale
L=L�t� should indeed scale algebraically with time, we next
determined the dynamical exponent z=z�T ,�� from the
criterion32 involving the single-time correlator,

C	t,L�t�
=!
1

2
, L�t� � t1/z�T,��. �6�

The results for z are shown in Fig. 2 and listed in Table I.
First, we observe that the values of z obtained in fact only
depend on the dimensionless ratio � /T, to within our numeri-
cal accuracy. Second, we see that the function z=z�� /T� is
nonlinear and only becomes an approximately linear function
in a relatively small region of values of z. We are confident
that our results are more reliable than earlier ones since they
do not just describe the scaling of a single quantity but rather
will be needed for the correct scaling description of several
other observables, as we shall show below. We stress that
only the values of z as given in Table I will lead to a good
scaling according to simple aging without having to consider
possible corrections to scaling.

In the same way, in Fig. 3 we show data for the scaling of
the thermoremanent magnetization, expected to be of the
form

MTRM�t,s� = s−afM�t/s� . �7�

The exponent a is obtained in the usual way39 by plotting the
thermoremanent magnetization as a function of the waiting
time s for fixed values of the ratio t /s. The resulting power-
law decay 	see Eq. �7�
 then yields the value of the exponent
a. The numerical values and error bars given in Table I and
shown in Fig. 2 are obtained after averaging over the values
obtained for five different values of t /s, namely, 3, 5, 7, 10,
and 15. Looking at these values �see Fig. 2�, we observe that
the estimates a=a�T ,�� scatter considerably more than those
for z. We consider this scatter to be large enough to conclude
that a cannot be reduced to a function of the single variable
� /T. Furthermore, considering in detail the numerical values
from Table I, we see that the relation a=1 /z, known from the
phase ordering of pure ferromagnets,2,40,41 is no longer valid.

In order to understand this finding, let us briefly recon-
sider how the relation a=1 /z may be derived for pure ferro-
magnets. Consider a pure ferromagnet in an external oscil-
lating magnetic field of angular frequency �. The dissipative
part of the linear response is given as the imaginary part of
the dynamic susceptibility and reads �see, e.g., Ref. 2�,

����,t� = �
0

t

duR�t,u�sin	��t − u�
 = �1���� + t−a�2���t� + . . .

�8�

where the last relation follows from the usually assumed
scaling 	Eq. �3�
 of the autoresponse function R�t ,s�. On the
other hand, motivated from the physical picture that the dy-
namics in phase ordering should only come from the motion
of the domain walls between the ordered domains, one
would expect to find40
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FIG. 1. Scaling of the autocorrelation C�t ,s� for �a� �=0.5 and
T=1, �b� �=1 and T=0.4, and �c� �=2 and T=0.4, for several
values of s. Here and in the following error bars are smaller than the
sizes of the symbols, unless explicitly stated otherwise.
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FIG. 2. Left panel: Dynamical exponent z, determined from the

condition C	t ,L�t�
=! 1
2 , as a function of � /T. The dashed line corre-

sponds to Eq. �5�. Right panel: aging exponent a, as determined
from the scaling of MTRM�t ,s�. In some cases we have more than
one data point for a given value of � /T. These data points corre-
spond to different values of � and T with � /T constant �see Table I�
showing that a is not simply a function of the ratio � /T but that it
depends in a more complicated way on both � and T.
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����,t� = �st� ��� + L�t�−1�age� ��t� + . . . �9�

from which one may identify the stationary and the aging
part with the terms in Eq. �8� coming from the scaling analy-
sis. Since only the domain boundaries contribute to the dy-
namics, the leading time-dependent part should be propor-
tional to the surface area of the domain divided by the total
volume, hence to L�t�d−1 /L�t�d=1 /L�t� which accounts for
the factor 1 /L�t� in Eq. �9�. Comparison of Eqs. �8� and �9�,
together with L�t�� t1/z, then gives a=1 /z.

Our empirical observation that az�1 suggests that the
above argument should no longer apply to random ferromag-
nets. Since Eq. �8� only depends on the dynamical scaling
assumption 	Eq. �3�
 and given that our numerical results
appear to be compatible with it, we expect that Eq. �8�
should remain valid for disordered ferromagnets. Since also
for disordered ferromagnets, the contribution to the aging
behavior should come from the boundary region between

ordered domains �this is also suggested by looking at the
microscopic spin configurations, see, e.g., Ref. 38�, we ex-
pect it to be proportional to Nd�L� /Nb�L�, where Nb,d�L� de-
note the number of mobile spins in the bulk and at the do-
main boundaries, respectively. While one should still have
Nb�L��Ld, disorder may cause the domain boundary to be-
come fractal, and hence, Nd�L��Ldf, with df the fractal di-
mension �and df =d−1 for the pure case�. Then Eq. �9� would
be replaced by

����,t� = �st� ��� + L�t�−�d−df��age� ��t� + . . . , �10�

and comparison with Eq. �8� would now imply

a =
d − df

z
. �11�

Our empirical results �Table I� imply that df �d−1, that is,
the disorder should modify the domain boundaries into frac-
tal curves. From Eq. �11�, since a depends on the dynamical
exponent z=z�� /T� as well as the fractal dimension df, it
may appear more natural that a cannot be written as a func-
tion of the single variable � /T.

In Fig. 4 we show the scaling behavior of the space-
dependent and time-dependent correlation and response
functions for various values of the waiting time s. For the
selected typical values of � and T, a simple aging behavior is
observed, in agreement with the observed scaling behavior of
the autocorrelation and of the autoresponse. We have found
completely analogous results for all other values of � and of
T which we considered. In fact, the scaling is much cleaner
than for the r=0 quantities and for none of the studied cases
a sizable correction to scaling could be identified. Obviously,
space-dependent and time-dependent quantities are much
better suited for an investigation of the scaling forms than

TABLE I. Dynamical exponent z, nonequilibrium response exponent a, the autocorrelation exponent
�C /z, and the autoresponse exponent �R /z for different values of � and T.

� T z a �C /z �R /z

0.5 1.5 2.08�1� 0.59�1�
0.5 1.0 2.11�1� 0.41�1� 0.565�10� 0.61�2�
0.5 0.8 2.16�1� 0.41�1� 0.56�1� 0.61�3�
0.5 0.6 2.33�1� 0.40�1� 0.54�1� 0.60�2�
0.5 0.5 2.46�1� 0.36�1� 0.48�1� 0.55�2�
0.5 0.4 2.64�2� 0.33�1� 0.46�1� 0.50�2�
0.5 0.3 3.02�2� 0.29�1� 0.385�10� 0.46�2�
1.0 1.0 2.45�1� 0.32�1� 0.49�1� 0.51�2�
1.0 0.8 2.65�2� 0.31�1� 0.445�10� 0.50�2�
1.0 0.6 3.02�2� 0.25�1� 0.38�1� 0.43�2�
1.0 0.4 3.85�3� 0.17�1� 0.29�1� 0.34�1�
1.5 0.9 3.02�3� 0.375�10�
2.0 1.0 3.39�3� 0.10�1� 0.315�10� 0.35�2�
2.0 0.8 3.92�4� 0.09�1� 0.270�5� 0.32�2�
2.0 0.6 4.97�4� 0.075�10� 0.217�3� 0.28�1�
2.0 0.5 5.76�5� 0.189�3�
2.0 0.4 7.22�6� 0.05�1� 0.155�3� 0.21�1�
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FIG. 3. Scaling of the thermoremanent magnetization
MTRM�t ,s� for several values of s with �a� �=0.5 and T=0.4, �b�
�=1 and T=0.6, and �c� �=2 and T=0.8.
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quantities that only depend on time. Similar conclusions
have recently been drawn from a study of nonequilibrium
growth models.42

Using the scaling forms �2� and �3� in the limit of large
y= t /s for the autocorrelation and autoresponse functions
�where r=0�, we have also extracted the exponents �C /z and
�R /z and list our results in Table I. In contrast to the pure
case, where for fully disordered initial conditions one may
show that �C=�R,4,10 the values of the autocorrelation expo-
nent �C are different from those of the autoresponse expo-
nent �R. In particular, we find that within our numerical ac-
curacy, �C /z is a function of the single variable � /T, at least
for ��2, while �R /z cannot be expressed in this way. Our
data suggest that �R��C and they are consistent with the
rigorous Yeung-Rao-Desai inequality �C�d /2.43 Further-
more, we observe that �R /z−a should be practically constant
�again for ��2 and with a value in the range 0.17–0.20�.
In conclusion, our data are clearly consistent with simple
aging of the single-time and two-time correlation functions,
as well as for the thermoremanent magnetization, and fully
confirm the anticipated scaling forms �1�–�3� with L�t�� t1/z.

Next, we shall compare the form of the scaling functions,
for several values of the control parameters � and T. Since
the dynamical exponent z=z�� /T�, see Fig. 2, one might ex-
pect that the scaling functions themselves should only de-
pend on the ratio � /T, rather than on � and T separately. In
Fig. 5, we test this idea by comparing data for �=T=1 with
those for �=T=0.5, for the three cases of �a� the space-time-
dependent correlation C�t ,s ;r�, �b� the autocorrelation
C�t ,s�, and �c� the space-time-dependent thermoremanent
magnetization MTRM�t ,s ;r�=h�0

sduR�t ,u ;r�. In all cases,
there is a clear scaling behavior consistent with simple
aging44 and the scaling functions nicely superpose �for the
integrated response, the data for �=T=0.5 were multiplied
by 1.17 in order to take into account the well-known pres-
ence of the nonuniversal numerical prefactor�. This result,
namely, that the form of the scaling function only depends on
the ratio � /T, goes beyond the standard scaling forms
�1�–�3�, yet it does not require to rescale the length by the

typical domain size L�t�, as it would be required for a test of
superuniversality. More systematic tests of this result would
be welcome. We point out that the findings of Fig. 5 are
consistent with our earlier observation that �C=�C�� /T�. The
more complicated dependence of �R on both � and T would
only appear if in plots such as Fig. 5�c� one would concen-
trate on the region �r�0.

After these preparations, we are ready for a test of supe-
runiversality. Superuniversality of the single-time correlator
C�t ,r� is tested in Fig. 6. First, we show in Fig. 6�a� data for
several values of 0���2 and T, where the values of z may
be read off from Fig. 2 and Table I. The times were chosen
sufficiently large such that a clear scaling behavior has set in.
Using the typical length scale L�t� as determined earlier from
Eq. �6�, we see that indeed all data, including the one for the
case without disorder, collapse nicely onto a single curve,
within the numerical accuracy. This is a clear confirmation of
superuniversality, very much in agreement with earlier
studies.16–21,32 However, when considering the case �=2,
which is shown in Fig. 6�b�, a different picture emerges.
Clearly, the scaling curves for C�t ,r� as obtained for several
values of T again collapse onto each other, but, as the com-
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parison with the scaling function of the pure case shows, the
scaling function is no longer the same as the one of the pure
case. Therefore, if taken at face value, the case �=2 might
represent a distinct superuniversality class. In order to get a
better understanding on this point, we show in Fig. 6�c� data
for a relatively large value of �. One sees that for moderately
large times, the data are very close to the curve found for
�=2, but when the time t is made very large, a crossover to
the curve of the pure case �=0 is observed. Qualitatively, the
crossover time t� increases when �→2 and becomes so
large that a crossover is no longer detectable for the times
�and the lattice sizes, which must be increased for large times
in order to avoid finite size effects� reachable with our nu-
merical methods. We did not see any sign for a crossover in
our data with �=2, but purely numerical techniques cannot
distinguish between a very large and an infinite crossover
time t�.

We extend the test of superuniversality to the case of
space-time-dependent two-time correlators in Fig. 7 and
similarly for the space-time-dependent two-time response in
Fig. 8. Qualitatively, we arrive at essentially the same con-
clusion as for the single-time correlator. In both cases, panel
�a� demonstrates a superuniversal behavior for values of 0
���2. We show here our data for y= t /s=4, but the same
behavior is observed for other values of t /s accessed in this
study, namely, 2� t /s�10. However, closer inspection also
shows that superuniversality is no longer true for relatively
small spatial distances �r� /L�s��0.5. This is shown in the
insets of the panel �a� in Figs. 7 and 8. Indeed, systematic
deviations are observed for small spatial distances, the larg-
est deviations being observed for the autocorrelation and au-
toresponse functions with �r�=0. The value of �r� /L�s� where
the deviations set in seems to depend slightly on the value of
s, but a larger range of s values than that accessed in the
present study is needed for a more quantitative discussion of
this point. That means that although dynamical scaling does
hold true even down to the autocorrelators and autore-
sponses, correlators and responses taken over a spatial dis-

tance of at least a typical cluster size L�t� show yet a larger
degree of universality.

This requirement appears to be consistent with the known
numerical values of the exponents �C /z and �R /z as listed in
Table I. Superuniversality at r=0 would have required that
their values should have been equal to those of the pure case
�=0, but we have rather seen that they depend on � and T.

On the other hand, the case �=2 again stands apart, as we
illustrate in the panels �b� in both Figs. 7 and 8. Comparing
the data for �=2 with the scaling functions found for 0��
�2 	see panels �a�
, we find small but systematic deviations.
We stress that although these deviations are not very large,
they are well outside the error bars of our high-quality data.
As for the single-time correlator, it remains a possibility that
for enormous times there might occur a crossover to the scal-
ing function of the pure case, but the relevant crossover time
t� is far larger than the time scales reached by our simula-
tion.

III. DISCUSSION

In this work, we have studied the nonequilibrium scaling
behavior of a disordered Ising model without frustration in
an attempt to appreciate better the role of disorder by con-
sidering its effects in a system which is no longer identical to
a pure system but which yet does not show the full complex-
ity of a spin glass. Our conclusions are as follows:

�1� When quenched to a temperature T�Tc from a totally
disordered state, the two-dimensional bond-disordered Ising
model undergoes phase-ordering kinetics. The typical length
scale L�t�� t1/z of the ordered domains scales algebraically
with time, where the dynamical exponent z=z�� /T� depends
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continuously on the dimensionless ratio � /T of the control
parameters.

Quantitatively, this dependence can be read off from Fig.
2 and does not agree with earlier proposals of a linear rela-
tion such as in Eq. �5�. We have seen that this value of z
correctly describes the dynamical scaling of not only single-
time correlators but also of the two-time correlators and re-
sponses as well.

�2� Our data are completely compatible with simple ag-
ing.

�3� While the nonequilibrium exponent b=0 of the corre-
lation function is unmodified with respect to pure phase-
ordering systems, the nonequilibrium exponent a which de-
scribes the scaling of the response function is no longer
simply related to the dynamical exponent z; see Table I and
Fig. 2.

We propose to account for this finding in terms of a pos-
tulated fractal structure of the domain walls, which has led us
to Eq. �11�. Further tests of this idea would be welcome.

The autocorrelation and autoresponse exponents �C
=�C�� /T� and �R=�R�T ,�� are distinct from each other, in
contrast to the pure case.

�4� Our data suggest that the form of the scaling functions
only depends on the dimensionless ratio � /T. It remains to be
seen to what extent this observation can be extended to dif-
ferent systems.

�5� In general, our data appear to confirm the superuniver-
sality hypothesis that is when all length scales are expressed
in terms of L�t�, the form of the scaling function is indepen-
dent of both the disorder � and the temperature T.

However, we have also found two important qualifica-
tions:

�a� Superuniversality does not hold for sufficiently small
spatial distances �r� /L�t��0.5.

�b� For �=2, although we find throughout a similar data
collapse, the form of the scaling functions no longer coin-
cides with the ones of the pure case. It is not understood
whether the data presented here should be viewed as giving
evidence for a distinct superuniversality class or else if there
is a crossover to the scaling functions of the pure scale at
time scales much larger than the ones reached in our study.

A better understanding of superuniversality will require
an explanation of these conditions. What can these findings
tell us on the behavior of real materials? Indeed, it has been
shown recently, in a comparative study of the three-
dimensional random-field Ising model and the three-
dimensional Edwards-Anderson spin glass21 that superuni-
versality is apparently satisfied in the former case �in which
the disorder is “weak” such that the ground state is still fer-
romagnetically ordered� while in the latter it is not.45 Our
own result is in qualitative agreement with this, but it raises
the question how to explain the celebrated universality of the
scaling functions for the linear response found in largely dif-
ferent materials.1
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